THE POTENTIAL OF EVAPORATION BOATS WASTE AS A CRUCIBLE MATERIAL FOR CASTING: A REVIEW

Authors

  • M. Nuril Anwar Habiby Department of Mechanical Engineering, Faculty of Engineering, Semarang State University, Sekaran, Gunungpati, Semarang, Indonesia
  • Rusiyanto Department of Mechanical Engineering, Faculty of Engineering, Semarang State University, Sekaran, Gunungpati, Semarang, Indonesia
  • Rahmat Doni Widodo Department of Mechanical Engineering, Faculty of Engineering, Semarang State University, Sekaran, Gunungpati, Semarang, Indonesia

DOI:

https://doi.org/10.51630/ijes.v5i1.95

Keywords:

Evaporation Boats Waste, Refractory, Crucible

Abstract

Industry in Indonesia continues to experience development in line with advances in science and technology, and this is because the industrial sector makes the most significant contribution to the national economy. However, industrial operations that are getting bigger can produce various kinds of waste, one of which is waste from the processing of plastic metallization applications and modern vacuum coating on food packaging, namely evaporation boats. The result of this waste is substantial because, in its application, evaporation boats will always be used as long as plastic food packaging continues to be produced around the world, so it is necessary to have handling for environmental sustainability in the future. Evaporation boat waste is waste that cannot be decomposed but can withstand heat and be used as a refractory material, especially as a primary material for making crucibles.

Downloads

Download data is not yet available.

References

P. Prajapati et al., “Critical review on technological advancements for effective waste management of municipal solid waste — Updates and way forward: Advancements in Municipal Solid Waste Management,” J. Environ. Technol. Innov., vol. 23, p. 101749, 2021, doi: 10.1016/j.eti.2021.101749.

J. Eichler, K. Uibel, and C. Lesniak, “Boron Nitride (BN) and Boron Nitride Composites for Applications under Extreme Conditions,” J. Int. Ceram., vol. 65, pp. 61–69, 2010, doi: 10.4028/www.scientific.net/ast.65.61.

A. Mukhopadhyay, G. B. Raju, B. Basu, and A. K. Suri, “Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics,” J. Eur. Ceram. Soc., vol. 29, no. 3, pp. 505–516, 2009, doi: 10.1016/j.jeurceramsoc.2008.06.030.

Rusiyanto et al., “Bab VIII. Pengaruh Komposisi Bahan Terhadap Mechanical Properties Pada Crucible Untuk Peleburan Aluminium,” in Book Chapter Kimia Jilid 1, Inovasi Kimia, 2022, pp. 197–221. doi: DOI: https://doi.org/10.15294/ik.v1i1.80.

J. A. Bayus, Environmental Life Cycle Comparison of Aluminum-based High Barrier Flexible Packaging Laminates. 2015.

H. He et al., “Applied properties and life cycle assessment of flexible packaging lamination processes: a comparative study,” Int. J. Life Cycle Assess., vol. 26, no. 3, pp. 561–574, 2021, doi: 10.1007/s11367-021-01883-4.

PT. 3M Indonesia, “3M TM Evaporation Boats 4.0,” 3M Sci. Appl. to life, pp. 1–2, 2015.

S. Bernard and P. Miele, “Polymer-derived boron nitride: A review on the chemistry, shaping and ceramic conversion of borazine derivatives,” J. Mater., vol. 7, no. 11, pp. 7436–7459, 2014, doi: 10.3390/ma7117436.

L. Backman, J. Gild, J. Luo, and E. J. Opila, “Part I: Theoretical predictions of preferential oxidation in refractory high entropy materials,” J. Acta Mater., vol. 197, pp. 20–27, 2020, doi: 10.1016/j.actamat.2020.07.003.

Rusiyanto et al., “Pengaruh Durasi Pencampuran Terhadap Mechanical Properties Crucible Peleburan Aluminium,” Inov. Kim., no. 1, pp. 39–64, 2022, doi: 10.15294/ik.v1i1.61.

A. Leman, T. Tiwan, and M. Mujiyono, “Tungku Krusibel dengan Economizer untuk Praktik Pengecoran di Jurusan Pendidikan Teknik Mesin FT UNY,” J. Din. Vokasional Tek. Mesin, vol. 2, no. 1, p. 21, 2017, doi: 10.21831/dinamika.v2i1.13496.

M. Palacz et al., “Experimental Analysis of the Aluminium Melting Process in Industrial Cold Crucible Furnaces,” Met. Mater. Int., vol. 26, no. 5, pp. 695–707, 2020, doi: 10.1007/s12540-019-00368-2.

D. L. Zariatin, I. Ismail, and M. Jaya, “Studi Eksperimental Efisiensi Peleburan Aluminium pada Tungku Crucible Furnaces,” JTERA (Jurnal Teknol. Rekayasa), vol. 4, no. 2, p. 209, 2019, doi: 10.31544/jtera.v4.i2.2019.209-218.

X. yong Gao, L. Zhang, X. hui Qu, X. wei Chen, and Y. feng Luan, “Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting,” Int. J. Miner. Metall. Mater., vol. 27, no. 11, pp. 1551–1559, 2020, doi: 10.1007/s12613-020-2098-9.

A. Hoseinpur and J. Safarian, “Mechanisms of graphite crucible degradation in contact with Si–Al melts at high temperatures and vacuum conditions,” Vacuum, vol. 171, p. 108993, 2019, doi: 10.1016/j.vacuum.2019.108993.

S. N. Perevislov, “Structure, Properties, and Applications of Graphite-Like Hexagonal Boron Nitride,” Refract. Ind. Ceram., vol. 60, no. 3, pp. 291–295, 2019, doi: 10.1007/s11148-019-00355-5.

B. R. Golla, T. Bhandari, A. Mukhopadhyay, and B. Basu, “Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications,” in The American Ceramic Society, John Wiley & Sons, Inc., 2014, pp. 316–361. doi: https://doi.org/10.1002/9781118700853.ch13.

M. Qin et al., “Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity,” J. Eur. Ceram. Soc., vol. 39, no. 4, pp. 952–956, 2019, doi: 10.1016/j.jeurceramsoc.2018.11.037.

N.-T. Nguyen, Fabrication technologies, Second Edi. Elsevier Inc, 2012. doi: 10.1016/b978-1-4377-3520-8.00004-8.

D. Whitney, Ceramic Cutting Tools, vol. 2, no. 1993. Elsevier Ltd, 2014. doi: 10.1016/B978-0-08-096527-7.00037-4.

Y. Xu et al., “Characteristics and performance of CaO-based high temperature CO2 sorbents derived from a sol-gel process with different supports,” RSC Adv., vol. 6, no. 83, pp. 79285–79296, 2016, doi: 10.1039/c6ra15785h.

K. S. Sridhar Raja, S. Ganesan, and J. Senthil Kumar, “Performance and emission characteristics of biodiesel from black pepper oil,” Int. J. Ambient Energy, vol. 40, no. 5, pp. 463–466, 2019, doi: 10.1080/01430750.2017.1410227.

R. Ji, Y. Liu, Y. Zhang, B. Cai, X. Li, and C. Zheng, “Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining,” J. Mech. Sci. Technol., vol. 27, no. 1, pp. 177–183, 2013, doi: 10.1007/s12206-012-1215-8.

S. Fashu et al., “A review on crucibles for induction melting of titanium alloys,” Mater. Des., vol. 186, p. 108295, 2020, doi: 10.1016/j.matdes.2019.108295.

J. Bayley, D. Crossley, and M. Ponting, Metals and Metalworking: A research framework for archaeometallurgy, vol. 6, no. 6. 2008.

Y. Hendronursito, K. Isnugroho, and D. C. Birawidha, “Analysis of crucible performance for aluminum scrap casting at small and medium enterprises (SMEs) foundry,” IOP Conf. Ser. Mater. Sci. Eng., vol. 478, no. 1, 2019, doi: 10.1088/1757-899X/478/1/012005.

H. Chen, H. Xiang, F. Z. Dai, J. Liu, and Y. Zhou, “Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A novel strategy towards making ultrahigh temperature ceramics thermal insulating,” J. Mater. Sci. Technol., vol. 35, no. 10, pp. 2404–2408, 2019, doi: 10.1016/j.jmst.2019.05.059.

N. R. Fajri, R. Rusiyanto, R. D. Widodo, W. Sumbodo, and D. F. Fitriyana, “Pengaruh Thermal Shock dan Komposisi Evaporation Boats, Semen Tahan Api, dan Pasir Silika terhadap Kekuatan Impact dan Foto Makro Lining Refractory,” J. Rekayasa Mesin, vol. 12, no. 1, p. 11, 2021, doi: 10.21776/ub.jrm.2021.012.01.2.

M. Herrmann, J. Räthel, S. Höhn, J. Eichler, and A. Michaelis, “Interaction of titanium diboride/boron nitride evaporation boats with aluminium,” J. Eur. Ceram. Soc., vol. 31, no. 13, pp. 2401–2406, 2011, doi: 10.1016/j.jeurceramsoc.2011.04.035.

Rusiyanto et al., “Metode Pembuatan Crucible Peleburan Logam Berbahan Limbah Evaporation Boats,” IDS000004495, 2021

S. I. Nurrohmah, Rusiyanto, R. D. Widodo, and W. Sumbodo, “Pengaruh Thermal Shock dan Komposisi Grafit, Kaolin (Clay) Terhadap Struktur Makro dan Ketahanan Impak Kowi Berbahan Dasar Limbah Evaporation Boats.,” J. Rekayasa Mesin, vol. 11, no. 2, pp. 287–295, 2020.

A. L. Sari and R. Rusiyanto, “Pengaruh Thermal Shock Resistence dan Komposisi Bahan Refraktori Terhadap Kekuatan Impact dan Struktur Makro,” J. Din. Vokasional Tek. Mesin, vol. 4, no. 2, pp. 105–110, 2019, doi: 10.21831/dinamika.v4i2.27392.

D. R. Sari, Rusiyanto, R. D. Widodo, and Pramono, “Pengaruh thermal shock resistance terhadap makro struktur dan ketahanan impact kowi pelebur (crusible) berbahan komposit abu sekam padi/grafit/kaolin,” J. Kompetensi Tek., vol. 9, no. 1, pp. 53–59, 2017.

S. Triyanto, Rusiyanto, R. D. Widodo, S. Anis, and D. F. Fitriyana, “Pengaruh Waktu Pencampuran Terhadap Kekerasan Vickers Material Crucible Berbahan Limbah Evaporation Boats, Kaolin, dan Semen Tahan Api,” J. Rekayasa Mesin, no. July, pp. 325–330, 2021.

Rusiyanto, M. Irfan, R. D. Widodo, Sunyoto, and D. F. Fitriyana, “Effect Of Drying Time On Cimpressive Strength, Impact Strength And Macro Structure Of Crucible Materials Made From Evaporation Boats Waste, Graphite And Kaolin,” Int. Conf. Sci. Technol., vol. 030001, no. March, 2023, doi: https://doi.org/10.1063/5.0124101.

G. T. Akbar, Rusiyanto, Sunyoto, Kriswanto, and N. F. Hendrix, “Pengaruh Waktu Ekstrusi Bahan Evaporation Boats, Grafit Dan Semen Castable Pada Mesin Ekstruder Terhadap Densitas, Porositas Dan Kekuatan Impak,” J. Inov. Mesin, vol. 4, no. 2, pp. 49–55, 2022, doi: https://journal.unnes.ac.id/sju/index.php/jim Pengaruh.

P. H. Krismanto, Rusiyanto, R. D. Widodo, Kriswanto, and H. N. Firmansyah, “Pengaruh Tekanan Terhadap Densitas, Pororsitas dan Struktur Mikro Kowi (Crusible) Berbahan Evaporation Boat, Kaolin, Castbale, dan Abu Sekam Padi,” J. Inov. Mesin, vol. 2, no. 2, pp. 11–18, 2020.

L. Erliyanti and H. Sunyoto, “Pengaruh Temperatur Sintering Terhadap Densitas, Porositas, dan Kekuatan Bending Lining Refractory Berbasis Limbah Evaporation Boats,” J. Kompetensi Tek., vol. 12, no. 1, pp. 25–30, 2020.

A. Latif, Rusiyanto, Sunyoto, Kriswanto, and D. F. Fitriyana, “Effect of Firing Temperature on Density, Porosity, Impact Strength, and Macro Structure of Crucible Materials Made from Graphite, Kaolin, and Castable Cement,” Int. J. Mech. Eng. Technol. Appl., vol. 3, no. 2, pp. 93–99, 2022.

W. M. Hidayat, Rusiyanto, R. D. Widodo, W. Sumbodo, and D. F. Fitriyana, “Effect of Firing Holding Time on Density, Porosity, and Hardness, Crucible Materials Based on Evaporation Boats,” Int. J. Mech. Eng. Technol. Appl., vol. 3, no. 2, pp. 79–84, 2022.

M. N. A. Habiby, R. Rusiyanto, R. D. Widodo, and W. Sumbodo, “Pengaruh Laju Pemanasan Green Body Terhadap Sifat Mekanis dan Fisis Material Crucible Berbahan Limbah Evaporation Boats,” J. Rekayasa Energi Manufaktur, vol. 7, no. 1, pp. 20–26, 2022, doi: http://doi.org/10.21070/r.e.m.v7i1.1639.

Downloads

Published

2024-04-07

How to Cite

Habiby, M. N. A., Rusiyanto, R., & Widodo, R. D. (2024). THE POTENTIAL OF EVAPORATION BOATS WASTE AS A CRUCIBLE MATERIAL FOR CASTING: A REVIEW. Indonesian Journal of Engineering and Science, 5(1), 035–044. https://doi.org/10.51630/ijes.v5i1.95