• Rachmat Hermawan Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
  • Rini Riastuti Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia



Fly ash, Reinforcement Concrete


Indonesia signed the Paris Agreement on facing climate change. Carbon dioxide is the main issue contributing to the greenhouse effect. Most power plant in Indonesia uses non-renewable energy to generate electricity. Increasing demand for electricity makes increasing coal consumption for steam power plants and directly contributes to greenhouse gasses from coal combustion and produces fly ash as a waste product. Otherwise, fly ash from Steam Power Plant is classified as pozzolanic materials being a part of substitution ordinary portland cement (OPC) on making reinforcement concrete. Many Researchers studied reinforcement concrete from fly ash composition and others development using renewable energy resources such as biomass. This paper presents a literature review on focus studying the properties of various types of fly ash and their effect on the performance of concrete, including corrosion resistance.


Download data is not yet available.


M. S. Darmawan, R. Bayuaji, B. Wibowo, N. A. Husin, and S. Subekti, “The effect of chloride environment on mechanical properties geopolymer binder with fly ash,” Key Eng. Mater., vol. 594–595, pp. 648–655, 2014, doi: 10.4028/

Fahirah, “Korosi pada Beton Bertulang dan Pencegahannya,” SMARTek, vol. 5, no. 3, pp. 190–195, 2012.

M. A. Baltazar-Zamora et al., “Effect of silica fume and fly ash admixtures on the corrosion behavior of AISI 304 embedded in concrete exposed in 3.5% NaCl solution,” Materials (Basel)., vol. 12, no. 23, pp. 1–13, 2019, doi: 10.3390/ma12234007.

B. Catur Marina and D. Ahmad Pujiyanto, “Pengaruh Fly Ash Terhadap Kuat Tekan dan Porositas Beton Berpori,” J. Saintis, vol. 20, no. 02, pp. 110–118, 2020, doi: 10.25299/saintis.2020.vol20(02).5622.

P. Morla, R. Gupta, P. Azarsa, and A. Sharma, “Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash,” Sustain., vol. 13, no. 1, pp. 1–16, 2021, doi: 10.3390/su13010398.

A. S. Sudjono, “Studi Analisis Waktu Layan Bangunan Beton: Pengaruh Penggunaan Mineral Tambahan Pada Campuran Beton,” J. Tek. Sipil, vol. 12, no. 3, p. 145, 2010, doi: 10.5614/jts.2005.12.3.3.

X. Wang et al., “Effect of fly ash on the self-healing capability of cementitious materials with crystalline admixture under different conditions,” AIP Adv., vol. 11, no. 7, 2021, doi: 10.1063/5.0056183.

E. Hariska, K. Kasman, and S. Ulum, “Analisis Sifat Fisik dan Mekanik Beton Geopolymer Dengan Pengikat Berbahan Dasar Fly Ash PLTU Mpanau,” Gravitasi, vol. 18, no. 1, pp. 24–35, 2019, doi: 10.22487/gravitasi.v18i1.13307.

R. Mardiah, A. Kamaldi, and M. Olivia, “Porositas Beton Blended Abu Terbang (Fly Ash) sebagai Substitusi SEMEN di Air Gambut,” Jom FTEKNIK, vol. 5, pp. 1–5, 2018.

F. C. Lo, S. L. Lo, and M. G. Lee, “Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality,” Environ. Sci. Pollut. Res., vol. 27, no. 19, pp. 23742–23760, 2020, doi: 10.1007/s11356-020-08796-z.

E. K. Pangestuti, S. Handayani, M. Purnomo, D. C. Silitonga, and M. H. Fathoni, “The Use of Fly Ash as Additive Material to High Strength Concrete,” J. Tek. Sipil dan Perenc., vol. 20, no. 2, pp. 65–70, 2018, doi: 10.15294/jtsp.v20i2.16274.

P. Chindaprasirt, W. Kroehong, N. Damrongwiriyanupap, W. Suriyo, and C. Jaturapitakkul, “Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash,” J. Build. Eng., vol. 31, no. April, p. 101415, 2020, doi: 10.1016/j.jobe.2020.101415.

J. Fořt, J. Šál, J. Žák, and R. Černý, “Assessment of wood-based fly ash as alternative cement replacement,” Sustain., vol. 12, no. 22, pp. 1–16, 2020, doi: 10.3390/su12229580.

H. Wang, H. Li, and F. Yan, “Synthesis and mechanical properties of metakaolinite-based geopolymer,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 268, no. 1–3, pp. 1–6, 2005, doi: 10.1016/j.colsurfa.2005.01.016.

T. Bakharev, “Durability of geopolymer materials in sodium and magnesium sulfate solutions,” Cem. Concr. Res., vol. 35, no. 6, pp. 1233–1246, 2005, doi: 10.1016/j.cemconres.2004.09.002.

S. Thokchom, P. Ghosh, and S. Ghosh, “Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars,” J. Eng. Appl. Sci., vol. 4, no. 7, pp. 28–32, 2009.

M. I. AbdulAleem and P. D. Arumairaj, “A R eview of S eismic A ssessment of R einforced C oncrete S tructure using P ushover A nalysis,” Int. J. Eng. Sci. Emerg. Technol., vol. 1, no. 2, pp. 118–122, 2011, doi: 10.7323/ijeset/v1.

T. A. Aiken, J. Kwasny, W. Sha, and M. N. Soutsos, “Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack,” Cem. Concr. Res., vol. 111, no. June, pp. 23–40, 2018, doi: 10.1016/j.cemconres.2018.06.011.

S. Kumar, P. Murthi, P. Awoyera, R. Gobinath, and S. Kumar, “Impact Resistance and Strength Development of Fly Ash Based Self-compacting Concrete,” Silicon, 2020, doi: 10.1007/s12633-020-00842-2.

M. Kumar, A. K. Sinha, and J. Kujur, “Mechanical and durability studies on high-volume fly-ash concrete,” Struct. Concr., vol. 22, no. S1, pp. E1036–E1049, 2021, doi: 10.1002/suco.202000020.

J. Lizarazo-Marriaga, C. Higuera, I. Guzmán, and L. Fonseca, “Probabilistic modeling to predict fly-ash concrete corrosion initiation,” J. Build. Eng., vol. 30, no. July 2019, 2020, doi: 10.1016/j.jobe.2020.101296.

A. Maryoto, “Penurunan Nilai Half Cell Potential Beton dengan Bahan Tambah Fly Ash dan Ca ( C 18 H 35 O 2 ) 2 Reduction of Half Cell Potential,” vol. 10, no. 2, pp. 45–49, 2014.

S. T. Banu, G. Chitra, P. O. Awoyera, and R. Gobinath, “Structural retrofitting of corroded fly ash based concrete beams with fibres to improve bending characteristics,” Aust. J. Struct. Eng., vol. 20, no. 3, pp. 198–203, 2019, doi: 10.1080/13287982.2019.1622490.

C. Zhang and F. Zhang, “Incorporation of silicon fume and fly ash as partial replacement of portland cement in reinforced concrete: Electrochemical study on corrosion behavior of 316lN stainless steel rebar,” Int. J. Electrochem. Sci., vol. 15, pp. 3740–3741, 2020, doi: 10.20964/2020.05.77.

P. Gu, J. J. Beaudoin, M. H. Zhang, and V. M. Malhotra, “Performance of steel reinforcement in Portland cement and high-volume fly ash concretes exposed to chloride solution,” ACI Mater. J., vol. 96, no. 5, pp. 551–558, 1999, doi: 10.14359/657.

L. Lin and X. Lai, “Research on the Influences of Resistivity for Steel Fiber Reinforced Concrete,” vol. 124, no. Isaeece, pp. 245–249, 2017, doi: 10.2991/isaeece-17.2017.46.

H. G. C. Silva, P. G. Terradillos, E. Zornoza, J. M. Mendoza-Rangel, P. Castro-Borges, and C. A. J. Alvarado, “Improving sustainability through corrosion resistance of reinforced concrete by using a manufactured blended cement and fly ash,” Sustain., vol. 10, no. 6, pp. 1–15, 2018, doi: 10.3390/su10062004.

S. Uthaman, R. P. George, V. Vishwakarma, M. Harilal, and J. Philip, “Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete,” Constr. Build. Mater., vol. 221, pp. 232–243, 2019, doi: 10.1016/j.conbuildmat.2019.06.070.

C. Gunasekara, D. Law, S. Bhuiyan, S. Setunge, and L. Ward, “Chloride induced corrosion in different fly ash based geopolymer concretes,” Constr. Build. Mater., vol. 200, pp. 502–513, 2019, doi: 10.1016/j.conbuildmat.2018.12.168.

K. Gu and B. Chen, “Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction,” Constr. Build. Mater., vol. 231, p. 117195, 2020, doi: 10.1016/j.conbuildmat.2019.117195.

Y. Jianming, W. Luming, J. Cheng, and S. Dong, “Effect of fly ash on the corrosion resistance of magnesium potassium phosphate cement paste in sulfate solution,” Constr. Build. Mater., vol. 237, p. 117639, 2020, doi: 10.1016/j.conbuildmat.2019.117639.

V. Venkata Sekhar Babu, J. Bramha Chari Kanneganti, and Y. Vinod, “Experimental studies on durability properties of Sustainable and Eco-friendly materials of GGBS and Fly ash in reinforced cement concrete,” IOP Conf. Ser. Earth Environ. Sci., vol. 796, no. 1, p. 012070, 2021, doi: 10.1088/1755-1315/796/1/012070.



2022-01-06 — Updated on 2022-07-16

How to Cite

Hermawan, R., & Riastuti, R. (2022). THE EFFECT OF FLY ASH UTILIZATION IN REINFORCEMENT CONCRETE: A REVIEW. Indonesian Journal of Engineering and Science, 3(1), 047–053.