DESIGN AND IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE-BASED HEART DISEASE DIAGNOSIS SYSTEM

Authors

  • I Putu Agus Eka Pratama Department of Information Technology, Faculty of Engineering, Udayana University, Jimbaran, Bali, Indonesia

DOI:

https://doi.org/10.51630/ijes.v3i1.33

Keywords:

Artificial Intelligence (AI), Case-Based Reasoning (CBR), Design Science Research Methodology (DSRM), diagnosis, heart disease

Abstract

As one of the deadliest diseases in the world, heart disease requires serious treatment. The weaknesses of providing services for heart disease in Bali Province are that there is no online diagnostic system to make it easier for people to check their health conditions to find out whether they have heart disease. Based on this research, the design and implementation of a web-based online heart disease diagnosis system are carried out. The diagnostic system uses Artificial Intelligence and inputs data from the user based on several questions posed by the system. This research uses Case-Based Reasoning (CBR) algorithm with Design Science Research Methodology (DSRM) and a case study qualitative research method. The test results show that the system designed and implemented can run well and perform accurate diagnostics according to the design and user needs.

Downloads

Download data is not yet available.

References

Pola Hidup Berubah, Hati-hati Penyakit Jantung di Usia Muda. Bali Post. 2018. (online). Retrieved: https://www.balipost.com/news/2018/09/30/57088/Pola-Hidup-Berubah,Hati-hati-Penyakit...html

Penyakit Jantung di Provinsi Bali. Profil Dinas Kesehatan Kota Denpasar Tahun 2019. (online). Retrieved: https://dinkes.denpasarkota.go.id

A.N. Fajar, “Perancangan Sistem Pakar Diagnosa Penyakit Jantung dengan Metode Forward Chaining”. Jurnal Informatika Universitas Pamulang 3(2):75, 2018. DOI: 10.32493/informatika.v3i2.1431

P.C.M. Cindy, et al., “Implementasi Sistem Pakar Diagnosa Penyakit Jantung Pada Manusia”. FRONTIERS: Jurnal Sains dan Teknologi, Vol.1, No.2, 2018.

K.H. Putri, “Diagnosa Penyakit Jantung Dengan Metode Penelusuran Forward Chaining Depth First Search”. Seminar Nasional Informatika (SEMNASIF), Vol.1, No.3, 2012.

W.S Leo, et al., 2013. Aplikasi Sistem Pakar Berbasis Web untuk Mendiagnosa Awal Penyakit Jantung. Konferensi Nasional Sistem Informasi (KNSI) 2013.

J. Parhusip, V.H. Pranatawijaya, D. Putrisetiani. ”Sistem Pakar Diagnosa Penyakit Jantung Menggunakan Metode Certainty Factor Berbasis Web,”. Seminar Nasional Informatika (SEMNASIF), Vol.1, No.3, 2012.

D.P.S. Dewi, “Sistem Pakar Diagnosa Penyakit Jantung dan Paru dengan Fuzzy Logic dan Certainty Factor. Jurnal Merpati Vol.2 No.3, Desember 2014.

Eka W., Novi I.P., 2018. Case Based Reasoning Untuk Diagnosis Penyakit Jantung Menggunakan Metode Minkowski Distance. Journal of Information Technology and Computer Science (INTECOMS) Volume 1 No 1, Maret 2018.

Eka W., Sri H., Case-Based Reasoning Untuk Diagnosis Penyakit Jantung. JCCS, Vol.11, No.1, January 2017, pp. 1~10. Vol.1, No. 2, Oktober 2014hlm. 83-90

Edi, F., Case Based Reasoning Diagnosis Penyakit Cardiovascular Dengan Metode Simple Matching Coefficient Similarity.Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK).

K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, "A Design Science Research Methodology for Information System Research," Vol. 24, Issue 3, 2007, pp. 45-78.

Downloads

Published

2022-07-16

How to Cite

Pratama, I. P. A. E. (2022). DESIGN AND IMPLEMENTATION OF AN ARTIFICIAL INTELLIGENCE-BASED HEART DISEASE DIAGNOSIS SYSTEM. Indonesian Journal of Engineering and Science, 3(1), 033–040. https://doi.org/10.51630/ijes.v3i1.33