COMPARATIVE BLADES NUMBER HORIZONTAL AXIS WIND TURBINES IN PROFILE NACA 0012 USING CFD SIMULATION

Authors

  • Dewi Puspita Sari Professional Engineer Certification, Faculty of Engineering, Atma Jaya Catholic University of Indonesia
  • Djoko Setyanto Professional Engineer Certification, School of Bioscience, Technology, and Innovation, Atma Jaya Catholic University of Indonesia
  • Rexon Harris Simanjuntak Professional Engineer Certification, School of Bioscience, Technology, and Innovation, Atma Jaya Catholic University of Indonesia
  • Ahmad Alfarizi Barzah Department of Mechanical Engineering, Faculty of Engineering, Universitas Sriwijaya, South Sumatera 30662, Indonesia
  • Wadirin Wadirin Study Program of Mechanical Engineering Education, Universitas Sriwijaya, South Sumatera 30662, Indonesia
  • Edi Setiyo Study Program of Mechanical Engineering Education, Universitas Sriwijaya, South Sumatera 30662, Indonesia
  • Rudi Hermawan Study Program of Mechanical Engineering Education, Universitas Sriwijaya, South Sumatera 30662, Indonesia

DOI:

https://doi.org/10.51630/ijes.v6i2.170

Keywords:

HAWT, NACA 0012, Blade number, CFD, tip-speed ratio

Abstract

This study explores the effect of blade count on the performance of low-scale horizontal axis wind turbines (HAWT) with NACA 0012 profiles using Computational Fluid Dynamics (CFD) methods. The results show that the turbine with three blades achieves the highest efficiency, with a power coefficient (Cp) of 0.54 at a Tip-Speed Ratio (TSR) of 7, while the four-blade turbine reaches a Cp of 0.48 at a TSR of 6. The mechanical power produced by the three-blade turbine is 1,040.81 W, 28% higher than that of the four-blade turbine (927.28 W). The progressive distribution of the pitch angle in the three-blade turbine minimizes the risk of stall and flow separation. These findings suggest that fewer blades can reduce flow interference and vortex-induced losses, making it an efficient solution for the wind energy potential in Indonesia. Future research should explore geometric and material variations for further optimization.

Downloads

Download data is not yet available.

References

adi Ahdiat, “Konsumsi Listrik Penduduk Indonesia Naik pada 2022, Capai Rekor Baru,” Databoks. Accessed: Apr. 23, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/02/23/konsumsi-listrik-penduduk-indonesia-naik-pada-2022-capai-rekor-baru

D. Kusdiana, “Laporan Kinerja Ditjen EBTKE 2022.,” 2022. Accessed: Nov. 12, 2023. [Online]. Available: https://www.esdm.go.id/assets/media/content/content-laporan-kinerja-direktorat-jenderal-energi-baru-terbarukan-dan-konservasi-energi-tahun-2022.pdf

A. Praditya et al., “Indonesia Clean Energy Outlook Tracking Progress and Review of Clean Energy Development in Indonesia,” Dec. 2019. [Online]. Available: www.iesr.or.id

P. Jamieson and Garrad. Hassan, Innovation in Wind Turbine Design, 1st ed. Chicaster, UK: A John Wiley & Sons, 2011. doi: 10.1002/9781119975441.

M. K. Johari, M. A. A. Jalil, and M. F. M. Shariff, “Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT),” International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 74–80, 2018, doi: 10.14419/ijet.v7i4.13.21333.

Kriswanto et al., “Rotor Power Optimization of Horizontal Axis Wind Turbine from Variations in Airfoil Shape, Angle of Attack, and Wind Speed,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 94, no. 1, pp. 138–151, 2022, doi: 10.37934/arfmts.94.1.138151.

H. Zhang, J. Wen, J. Zhan, and D. Xin, “Effects of blade number on the aerodynamic performance and wake characteristics of a small horizontal-axis wind turbine,” Energy Convers Manag, vol. 273, p. 116410, 2022, doi: https://doi.org/10.1016/j.enconman.2022.116410.

A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, “A review on small scale wind turbines,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 1351–1371, Apr. 2016, doi: 10.1016/j.rser.2015.12.027.

M. N. Kaya, F. Kose, D. Ingham, L. Ma, and M. Pourkashanian, “Aerodynamic Performance of a Horizontal Axis Wind Turbine with Forward and Backward Swept Blades.,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 176, pp. 166–173, May 2018, doi: 10.1016/j.jweia.2018.03.023.

K. Deghoum et al., “Optimization of Small Horizontal Axis Wind Turbines Based on Aerodynamic, Steady-State, and Dynamic Analyses,” Applied System Innovation, vol. 6, no. 2, Apr. 2023, doi: 10.3390/asi6020033.

T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, Wind energy handbook. John Wiley & Sons, 2011.

K. Oukassou, S. El Mouhsine, A. El Hajjaji, and B. Kharbouch, “Comparison of The Power, Lift and Drag Coefficients of Wind Turbine Blade from Aerodynamics Characteristics Of NACA 0012 and NACA 2412.,” in Procedia Manufacturing, Tetouan, Moroco: Elsevier B.V., 2019, pp. 983–990. doi: 10.1016/j.promfg.2019.02.312.

L. Qunfeng, C. Jin, and C. Jiangtao, “Study of CFD Simulation of a 3-D Wind Turbine,” China National Nature Science Fund, vol. 5, no. 5, May 2011, doi: 10.1109/ICMREE.2011.5930883.

A. Sayma, Computational Fluid Dynamics, 1st ed. London: Abdulnaser Sayma & Bookboon.com, 2009. Accessed: Apr. 24, 2024. [Online]. Available: https://bookboon.com/en/computational-fluid-dynamics-ebook?mediaType=ebook

Downloads

Published

2025-05-13

How to Cite

Sari, D. P., Setyanto, D., Simanjuntak, R. H., Barzah, A. A., Wadirin, W., Setiyo, E., & Hermawan, R. (2025). COMPARATIVE BLADES NUMBER HORIZONTAL AXIS WIND TURBINES IN PROFILE NACA 0012 USING CFD SIMULATION. Indonesian Journal of Engineering and Science, 6(2), 069–079. https://doi.org/10.51630/ijes.v6i2.170