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ABSTRACT:  This paper presents an experimental study of linear control algorithms 

applied to a Ball and Beam system with a central axis. The focus is on evaluating the ball's 

ability to remain balanced around the central axis and assessing the stability of linear control 

strategies in real-world applications. The system is controlled using an STM32F4 

microcontroller, which manages a DC motor to adjust the beam's angle in response to the 

ball's position. Through a series of experiments and data analysis, the study explores the 

effectiveness of linear control in addressing the system's nonlinear dynamics and discusses 

the practical challenges faced during implementation. The results contribute to a deeper 

understanding of advanced control techniques and their potential applications in 

engineering. 
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1. INTRODUCTION  

The ball-and-beam system, a classic example in control theory, offers the unique 

challenge of balancing a ball along a beam by adjusting its tilt. This system, often used in 

educational and research environments, provides valuable insights into feedback control and 

dynamic stability. Specifically, in a middle-axis configuration, the ball must be controlled to 

remain at the center of the beam, requiring precise adjustments to the beam's angle. In such 

systems, linear control methods are employed to effectively manage the forces and maintain 

stability. 

This article delves into applying linear control techniques to balance the ball along the 

ball's middle axis of the Ball and Beam system using the STM32F4 microcontroller. 

Renowned for its robust processing capabilities, the STM32F4 is ideal for real-time control 

applications [16], enabling high-precision feedback to adjust the beam's angle with great 

accuracy. By utilizing a linear control approach, such as Proportional-Derivative (PD) [13] or 

Proportional-Integral-Derivative (PID) controllers [3], this system demonstrates the power of 

microcontroller-based solutions in solving complex dynamic problems. Through this work, 

we explore how the STM32F4 chip enhances the efficiency and responsiveness of the control 

system, ensuring optimal performance in the balancing task. 

We use the STM32F4 microcontroller to control a DC motor for balancing the ball with 

linear control algorithms [2]. In this paper, we implement three control methods: linear 

quadratic regulator (LQR), Proportional Derivative (PD), and Pole Placement. After 
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developing these algorithms, we test them on a real-life model to evaluate their adaptability 

and performance in a practical system. 

Despite the effectiveness of established educational models, their high costs can be 

prohibitive. Consequently, researchers have explored developing cost-effective, real-time 

models to improve accessibility for educational purposes. Previous studies have shown that 

while self-made models can provide valuable insights, the control hardware, such as the DSP 

TMS320F28335, often remains expensive and less adaptable for students. In contrast, 

Arduino platforms, while affordable and supported by a strong community, mainly support 

basic control algorithms like PID [3] and linear control. Their limitations become evident 

when tackling more complex systems. Arduino struggles with the high-velocity operations 

required for intricate systems like tower cranes, which are often classified as MIMO (multi-

input, multi-output) under-actuated models. 

The STM32F4 microcontroller, however, emerges as a more suitable alternative, capable 

of executing sophisticated control algorithms through MATLAB embedding. This platform 

has proven effective for managing high-order systems, including inverted pendulums, and has 

successfully implemented PID control [3] in MIMO systems like tower cranes. Compared to 

DSP boards, the STM32F4 is more affordable, making it a practical choice for educational 

use. In contrast, its ability to support advanced control strategies makes it a valuable tool for 

simulation and experimental applications. 

This study applies linear control algorithms to a Ball and Beam system using the 

STM32F4 [10] to control a DC motor. The goal is to investigate the ball's balancing 

capabilities around the central axis and assess the stability and performance of linear control 

in real-time applications [8]. Through this study, we aim to comprehensively evaluate linear 

control's effectiveness in a practical Ball and Beam setup, contributing to the broader field of 

control engineering. 

2. MODELING OF BALL AND BEAM SYSTEM 

The Ball and Beam system is an engaging and dynamic setup that consists of two straight 

sticks forming the beam, a smooth metal ball that rolls along its length, and a DC motor 

responsible for adjusting the beam's angle. A position sensor made from a resistive wire runs 

along the beam to track the ball's position, generating a variable voltage signal that changes 

as the ball moves. An encoder attached to the DC motor reads the angle of the beam, 

allowing for precise adjustments [5]. 

As the DC motor pivots the beam, it creates a moment that influences the ball's position, 

enabling real-time control and stability. This intricate interaction between the components not 

only showcases the principles of feedback control but also offers hands-on experience in 

managing dynamic systems. The ball-and-beam system is not just a project; it's a fascinating 

exploration of engineering concepts in action [7]. 

2.1. LQR algorithm 

We can determine the direction of rotation and the movement of the ball and beam, 

distinguishing between positive and negative values. It is illustrated in Fig. 1 from [1]. 

Choose the potential energy reference point at point O, which is located at the center of the 

horizontal beam. Since the reference point O coincides with the center of mass of the beam, 

the potential energy of the beam remains zero throughout the motion. 
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Fig. 1. Determine the positive and negative directions for the beam's rotation and the ball's 

movement 

Table 1. Oversee elements in the system 

Parameter Value 

Lb 0.34 (m) 

mb 0.35 (kg) 

mB 0.045 (kg) 

R 0.011 (m) 

θ N/a (rad) 

p N/a (m) 

τ N/a (Nm) 

e N/a (V) 

p=vb N/a (m/s) 

Based on the reference from source [2], we have derived the equation to describe the 

system. 

Linearizing the ball and beam system to analyze controllability: 
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The system is in the form of: 

( ),x f x e=  (3) 

With: 

1 2 3 4[ ]f f f f f=  (4) 

Choose the equilibrium position as point O, located at the center of the horizontal beam, 

where the ball can remain balanced at point 0, p=0 the ball is located at the center of the 

horizontal beam, ṗ=0 is when the ball is stable, e=0 the horizontal beam is positioned 
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horizontally, θ=0 the horizontal beam is stationary and not moving, with the voltage supplied 

to the motor equal to zero: p=0; ṗ=0; θ=0; 𝜃̇=0. 

The ball and beam system can be approximated as linear: 

x Ax Be= +  (5) 

-LQRu Ku=  (6) 

We used a command in Matlab to find K: 

( , , , )K dlqr A B Q R=  (7) 

With: 
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2.2. Pole placement algorithm 

The Pole Placement Algorithm [15] is a fundamental technique [11] used in control 

theory for designing state feedback controllers. It involves selecting desired locations (poles) 

for the closed-loop system's characteristic equation, which determines the system's stability 

and dynamic behavior. The idea is to adjust the feedback gains such that the poles of the 

closed-loop system are placed at specific locations in the complex plane, ensuring desired 

system performance such as stability, transient response, and damping [12]. 

Pole placement control uses the gain matrix K, similar to LQR, but determines K through 

a different method. 

x Ax Be= +  (9) 

we have: 

x Ax Bu

c Cx Du

= +

= +
 (10) 

The control system uses voltage value to keep the ball balanced around 0 points, so we 

have u bellow: 

u Kx= −  (11) 

To find K, we use the Matlab command to calculate the open-loop eigenvalues: 

( )E eig A=  (12) 

After using the command, we select the complex value and negative value to use as 

close-loop eigenvalue: 

[ ]P a b c d= ; with a, b <0 and b, c is a complex number. 
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To find K, we use the Matlab command: 

( , , )K place A B P= ; with A and B is the matrix from: 

1

2

1

3

4

0 0 0

0 0 0
,

0 0 0

0 0 0

Q

Q
Q R R

Q

Q

 
 
 = =
 
 
 

 

2.3. PID algorithm 

The PID (Proportional-Integral-Derivative) controller [3] is one of the most widely used 

control algorithms in industrial and engineering applications. It continuously adjusts the 

control input to a system based on the error between the desired and actual outputs. The 

algorithm combines three key terms—proportional, integral, and derivative—to determine the 

control action. 

In this experiment, we use only the proportional (P) and derivative (D) elements to 

balance the ball [13]. 

The general form of the PID control law is: 

  += + 
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de t
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Where: 

u(t) is the control signal (input to the system). 

e(t) is the error signal, defined as the difference between the desired output (setpoint) and 

the actual output (measured value). 

p i dK ,K ,K  are the proportional, integral, and derivative gains, respectively? 

We rely on the LQR value of Eq. 13 to adjust the element values P and D. 

 

2.4. Discussion and Hardware 

We utilize MATLAB/SIMULINK software for simulation validation. The mathematical 

model is computed and identified to perfectly reflect the real-world model, enabling us to 

accurately evaluate the process using these linear algorithms to assess adaptability through 

objective functions. Additionally, we integrate this LQR algorithm with the optimized 

parameters into the experimental model to conclude the smart swarm’s search capabilities. 

Simulations are conducted for 10 seconds, with a system sampling time of 0.01 seconds. The 

main parameters utilized in this paper are presented below: 
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Fig. 2. Ball and Beam using LQR in Simulink 

 

Fig. 3. Real-life ball and beam system 

 

Table 2. Elements of ball and beam system 

Station Parameter Value Unit 

1 mB 0.045 kg 

2 mb 0.35 kg 

3 LB  0.34 m 

4 Kt 0.06494 N 

5 Kb 0.06494 V.s/rad 

6 Rm 6.83572 Ω 

7 R 0.011 m 

 

Table 3. Parts of a real-life system 
Station Unit 

1 DC motor detach with encoder 

2 The beam is wrapped with a resistive wire. 

3 Iron ball 

4 Voltage supplier 

5 STM32F4 Discovery 

6 Voltage regulator circuit 

7 Output reader 

8 H-bridge 
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The system consists of a horizontal beam, a ball, a DC motor, a sensor to read the ball's 

position, and an encoder attached to the motor shaft to measure the rotational angle of the 

motor, which corresponds to the tilt angle of the beam. The sensor determines the ball's 

position on the beam by wrapping the beam with a resistive wire and applying a voltage. This 

voltage produces an ADC signal, which is then processed to determine the position of the ball 

based on the ADC reading. The beam can rotate around its central axis thanks to the torque 

generated by the motor, which is applied to the beam. 

 
 

 

Fig. 4. Connection of Real-life system 

3. RESULTS AND DISCUSSION 

3.1. Results of LQR Algorithm Method in Real-Life Model 

Based on the reference from source [2], we have matrix Q as: 

1
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4
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;
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 
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 (14) 

So we got the first result after embedding the code in the real-life hardware with: 

180 0 0 0

0 4.2 0 0

0 0 110 0

0 0 0 0.5

Q =

 
 
 
 
 
 

 (15) 

1 2 3 4, , ,K K K K are described as the system's position, velocity, rotation angle, and angular 

velocity. So, we have to modify and adjust these elements to stabilize the model. 
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In this article, we focus on adjusting K1 and K4. Position is crucial for balancing the ball, 

while angular velocity is used to determine the velocity needed to maintain balance. 

Table 4. Adjust elements of matrix Q 

Parameter 
1K  4K  Results 

LQR-1 180 0.5 Fig. 5 

LQR-2 180 0.3 Fig. 6 

LQR-3 350 0.3 Fig. 7 

LQR-4 400 0.3       Fig. 8 

 

  
Fig. 5. LQR-1's result Fig. 6. LQR-2’s result 

  

Fig. 7. LQR-3’s result Fig. 8. LQR-4’s result 

 

The results from the initial changes to matrix Q show that the system attempts to position 

the ball at zero. However, the DC motor remains unstable when rotating rapidly Fig. 55. 

Reducing the value of K4 resulted in the motor rotating in a more controlled manner Fig. 66. 

Increasing the value of K1, which has the most significant impact on the ball's position, 

yielded results showing progress in centering the ball Fig. 7. The final configuration of matrix 

Q yielded stable results for the real-life system, significantly enhancing its performance and 

reliability Fig. 8. 

3.2. Result of Pole Placement Method in Real-Life Model 

After calculating K by command in Matlab, we have the first result: 

[ 5.3186 5.2375]
0.0386 0.0386

5.2753 5.2753
P

i i
= − −

− −   
   
+ −   

 

https://doi.org/10.51630/ijes.v4i1.xx


        Indonesian Journal of Engineering and Science, Vol. 6, No. 1, 2025 Hyunh, et.al. 
        https://doi.org/10.51630/ijes.v6i1.149  

9 

Similar to LQR, the elements of P are related to the Q matrix from LQR, with the main 

elements being the first and last ones in the P matrix. This article focuses on adjusting the 

main elements to observe how the system responds to the ball's position. (With P1 and P4 are 

negative values). 

Table 5. Adjust elements of matrix P 

Parameter 1P  4P  Result 

PP-1 -5.3186 -5.2375 Fig. 9 

PP-2 -5.6 -5.2375 Error! 

Reference 

source not 

found. 

PP-3 -5.6 -5.1 Error! 

Reference 

source not 

found. 

PP-4 -5.6 -5.12 Error! 

Reference 

source not 

found. 

 

 

Fig. 9. PP-1’s result 

 

Fig. 10. PP-2’s result 

 
Fig. 11. PP-3’s result 

 
Fig. 12. PP-4’s result 

 

After finding P, we obtain the first desired closed-loop eigenvalue. Still, the result is 

insufficient for the desired performance Fig. 9. Changing P1 makes the system respond to the 

position more effectively Fig. 10. We adjusted 
4P to stabilize the rotation of the DC motor. It 

worked as expected Fig. 11. We made slight adjustments and achieved a stable, temporarily 

stable result Fig. 12. 
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3.3. Real-Life PD Control Result in Real-Life Model 

Based on the matrix Q of LQR. We are using 
1 2 3 4, , ,K K K K

1 1 2 2, , ,p d p dK K K K PD control 

elements. 

1 1 2 2230, 90, 150, 1p d p dK K K K= = = =  

This article uses P and D control instead of PID control. Our primary focus is adjusting 

the PD control's angular velocity element to observe how the system responds to the ball's 

position. 

Table 6. Adjust elements of PD control 

Parameter 1pK  2dK  Result 

PD-1 230 1 Fig. 13 

PD-2 230 5 Fig. 14 

PD-3 230 8 Fig. 15 

PD-4 230 10 Fig. 16 

 

Fig. 13. PD-1’s result 

 

Fig. 14. PD-2’s result 

 

Fig. 15. PD-3’s result 

 

Fig. 16. PD-4’s result 

 

After changing Kp1, we observed an improvement in the ball's position response when 

Kp1 was increased. However, the motor's rotational response was still not satisfactory Fig. 

13). Increasing Kd2 resulted in an outstanding response to the motor's rotation with respect to 
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the ball's position, as shown in Fig. 14 to Fig. 15. Adjusting a little bit of Kd2 ‘s value, we 

achieved very good system stability Fig. 16. 

3.4. Evaluation About Effectiveness 

To objectively evaluate the controllers presented in Fig. 5 – 16, Table 7 compares the 

stability and optimality criteria between the controllers. It helps highlight the performance 

and the improvements made by developing a linear controller for the ball and beam model. 

The criteria are presented in Table 7 below: 

Table 7. Overview comparison of stability and optimality criteria between the controllers 

Controller LQR Pole Placement PD 

Target Beam Ball Beam Ball Beam Ball 

Unit Angle(rad) Position(m) Angle(rad) Position(m) Angle(rad) Position(m) 

Rise time(s) 232 230 300 290 380 370 

Settling time(s) 820 830 360 350 470 465 

Peak Value 0.0222π -0.015 0.0111π -0.02 0.0389π 0.01 

Based on the performance comparison of the three controllers (LQR, Pole Placement, 

and PD), each controller has advantages and disadvantages. The LQR controller has the 

lowest rise time (232s for beam and 230s for ball), indicating a faster response capability, but 

it also has the longest settling time (820s and 830s), showing that the system takes longer to 

stabilize. In contrast, the Pole Placement controller has the shortest settling time (360s for 

beam and 350s for ball), making it suitable for applications requiring quick stabilization. 

Regarding the peak value, LQR and Pole Placement achieve smaller values than PD, 

particularly for the beam's angle 0.0222π and 0.0111π compared to 0.0389π, demonstrating 

better oscillation minimization. Meanwhile, the PD controller exhibits the highest rise time 

and peak value, reflecting slower response speed and more significant oscillation. Overall, 

LQR suits systems requiring high precision, Pole Placement is optimal for scenarios 

demanding rapid stabilization, and PD can be used in simpler systems with less stringent 

requirements. 

4. CONCLUSION 

This study explored linear control methods for balancing the ball in a Ball and Beam 

system. Linear control techniques, such as LQR, PD, and pole placement, offer distinct 

advantages and trade-offs regarding stability, complexity, and performance. LQR proved to 

be the most effective control strategy, offering superior performance compared to PD and 

pole placement. It provided better stability and faster response in balancing the ball on the 

beam, making it the most reliable approach for managing the system's dynamics. However, 

the complexity of LQR, particularly in terms of tuning and computation, makes it more 

challenging to implement than more straightforward methods like PD and pole placement. 

While less complex and easier to implement, PD control did not perform as well as LQR 

in terms of system stability and responsiveness Fig. 15). It is well-suited for simpler systems 

or when computational resources are limited, but its performance can fall short for more 

demanding applications, especially when dealing with nonlinearities or more complex 

dynamic behaviors. 

Pole placement, on the other hand, offers a simpler alternative to LQR [14] with an 

intuitive approach to control design. However, it did not provide the same level of stability as 
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LQR. Fig. 7 to 9. While it can be effective in systems where control simplicity is prioritized, 

it may not be the best choice for applications requiring precise and robust control [15]. 

In conclusion, while LQR is more complex than PD and pole placement, its effectiveness 

in balancing the ball in the ball-and-beam system makes it the preferred choice for 

applications where performance is critical. For simpler systems or educational purposes, PD 

or pole placement may still be viable alternatives, with pole placement being a good balance 

between simplicity and control performance, though not as stable as LQR Fig. 8. 

The Ball and Beam middle-axis system provides an excellent platform for exploring the 

challenges and solutions related to nonlinear dynamics and control. While linearization offers 

a practical way to simplify the design of control algorithms, it also comes with the trade-off 

of ignoring the nonlinearities that exist in the system. As the system operates further from 

equilibrium, these nonlinear effects become more significant and can degrade the 

performance of linear controllers. Alternative control strategies that account for nonlinear 

behavior, or hybrid approaches combining linear and nonlinear techniques, should be 

considered to overcome these challenges. By addressing the nonlinear aspects of the Ball and 

Beam system, it is possible to achieve more robust and adaptive control solutions that 

improve system performance across a broader range of operating conditions. 
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APPENDIX 

Assemble number for Ball and Beam system in Simulink 

%%Author: Huynh Duy Khoa 

clc; 

syms x1 x2 x3 x4 u 

syms Kt Kb Rm mB mb R Lb g Jb JB 

 

p_init=0.08; 

p_dot_init=0.01; 

theta_init=0.02; 

theta_dot_init=-0.02; 

 

f1 = x2; 

f2 = (mB*x1*x4^2-mB*g*sin(x3))/(mB+(JB/R^2)); 

f3 = x4; 

f4= (((Kt*u-Kt*Kb*x4)/Rm)-2*mB*x1*x2*x4-mB*g*x1*cos(x3))/(Jb+mB*x1^2); 

 

A = [diff(f1,x1) diff(f1,x2) diff(f1,x3) diff(f1,x4); 

    diff(f2,x1) diff(f2,x2) diff(f2,x3) diff(f2,x4); 

    diff(f3,x1) diff(f3,x2) diff(f3,x3) diff(f3,x4); 

    diff(f4,x1) diff(f4,x2) diff(f4,x3) diff(f4,x4)];     

 

B = [0;0;0; diff(f4,u)]; 

 

%assemble 

 

x1=0;x2=0;x3=0;x4=0;u=0; 

 

Kt = 0.06494; 

Kb = 0.06494; 

Rm = 6.83572; 
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mB = 0.045; 

mb = 0.35; 

R = 0.011; 

Lb = 0.37; 

g =  9.81; 

 

JB = (2*mB*R^2)/5; %moment of ball 

Jb = (mb*Lb^2)/12; %moment of beam 

 

A =[                                                                                                                            0,                            1,                                

0,                                         0; 

                                                                                                          (mB*x4^2)/(mB + JB/R^2),                            0,    -

(g*mB*cos(x3))/(mB + JB/R^2),                (2*mB*x1*x4)/(mB + JB/R^2); 

                                                                                                                                0,                            0,                                

0,                                         1; 

 (2*mB*x1*(2*mB*x1*x2*x4 - (Kt*u - Kb*Kt*x4)/Rm + g*mB*x1*cos(x3)))/(mB*x1^2 + Jb)^2 - (g*mB*cos(x3) + 

2*mB*x2*x4)/(mB*x1^2 + Jb), -(2*mB*x1*x4)/(mB*x1^2 + Jb), (g*mB*x1*sin(x3))/(mB*x1^2 + Jb), -((Kb*Kt)/Rm 

+ 2*mB*x1*x2)/(mB*x1^2 + Jb)]; 

 

B =[               0; 

                      0; 

                      0; 

 Kt/(Rm*(mB*x1^2 + Jb))]; 

 

f1 = x2; 

f2 = (mB*x1*x4^2-mB*g*sin(x3))/(mB+(JB/R^2)); 

f3 = x4; 

f4= (((Kt*u-Kt*Kb*x4)/Rm)-2*mB*x1*x2*x4-mB*g*x1*cos(x3))/(Jb+mB*x1^2); 
 

 

Finding K for LQR control method 

%% Huynh Duy Khoa 

%% Finding K for LQR control 

clc; 

clear; 

x1=0;x2=0;x3=0;x4=0; 

u=0; 

 

A =  [       0    1.0000         0         0; 

         0         0   -7.0071         0; 

         0         0         0    1.0000; 

 -110.5583         0         0   -0.1545]; 

B=[0;0;0;2.3792]; 

 

Q=[400 0 0 0; 

    0 4.2 0 0; 

    0 0 110 0; 

    0 0 0 0.3]; 

[Ad,Bd] = c2d(A,B,0.01); 

 

R=0.01; 

K=dlqr(Ad,Bd,Q,R) 
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Finding K for Pole placement control method 

%% Huynh Duy Khoa 

clc; 

 

syms k1 k2 k3 k4 s muy omega gtd 

 

K = [k1 k2 k3 k4]; 

 

I = [1 0 0 0; 

    0 1 0 0; 

    0 0 1 0; 

    0 0 0 1]; 

 

A =  [       0    1.0000         0         0; 

         0         0   -7.0071         0; 

         0         0         0    1.0000; 

 -110.5583         0         0   -0.1545]; 

 

B=[0;0;0;2.3792]; 

 

C=[1 0 0 0; 

    0 1 0 0; 

    0 0 1 0; 

    0 0 0 1]; 

 

D=[0;0;0;0]; 

 

s0=A-B*K; 

 

s1=s*I-A+B*K; 

s2=det(s1); 

 

p=[-5.6 -0.0386+5.2753i -0.0386-5.2753i -5.12]; 

 

K=place(A,B,p) 

acl = A-B*K; 

ecl = eig(acl); 

 

https://doi.org/10.51630/ijes.v4i1.xx

